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Abstract

The dramatic increase of air traffic over the last detedecaused the air traffic system
to come to its full capacity. The projected growth indicttes the system will head into
a gridlock in the near future. In order to reduce delays and ptiobtems, several
changes to the Air Traffic Management (ATM) system havenh@m®posed. These
changes range from short-term solutions such as controlleratesigpport tools to long-
term solutions where the decision-making responsibilities areibditgd among
participating parties to strip the system of its heavily centralizedrotzy.

Any changes to the ATM system and its procedures have to bheatdaland verified
before they can be deployed. As a result, developments of veoificativironments
become critically important to further advances in ATM. Du¢h complexity of the
ATM system as well as the costs and risks associated iigtit fests, system-wide
computer simulations have become almost the only feasible appfoadvaluating
automation tools and new concepts.

This thesis will present a new modeling approach to systemaeicuter simulation of
ATM systems. The main part of the research that will beepted emphasizes the
modeling and computer implementation of all relevant ATM componemds their
dynamic interactions. By introducing an object-oriented modelingyoagh for each
object, it was possible to simulate it “as-it-is” in raé.| In the course of deriving the
models, it was necessary to develop methods for the applicatioshoiigaes such as
feedback linearization and extrapolation schemes.

The developed simulation model was evaluated by obtaining resuttspierforming a
simulation for several simulation scenarios. These resultshollv that the modularized
modeling approach is capable of emulating a realistic behavitvedditnulated system.
Compared with existing ATM computer simulation programs, theepted simulation
model is highly flexible so it can be used to study both theentirand future ATM
systems. It provides a realistic and consistently accuiatdagtion environment and is
simple to use.
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